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Abstract—We present StyleTune, a mobile app for interactive
multi-level control of neural style transfers that facilitates
creative adjustments of style elements and enables high output
fidelity. In contrast to current mobile neural style transfer apps,
StyleTune supports users to adjust both the size and orientation
of style elements, such as brushstrokes and texture patches,
on a global as well as local level. To this end, we propose
a novel stroke-adaptive feed-forward style transfer network,
that enables control over stroke size and intensity and allows a
larger range of edits than current approaches. For additional
level-of-control, we propose a network-agnostic method for
stroke-orientation adjustment by utilizing the rotation-variance
of Convolutional Neural Networks (CNNs). To achieve high
output fidelity, we further add a patch-based style transfer
method that enables users to obtain output resolutions of more
than 20 Megapixel (Mpix). Our approach empowers users to
create many novel results that are not possible with current
mobile neural style transfer apps.

Keywords-neural style transfer, local adjustments, mobile
devices, artistic rendering, interaction

I. INTRODUCTION

Machine learning has become of prior interest to both

research and end-user applications of image-based artistic

rendering [1]. Its usage in mobile expressive rendering se-

tups has particularly increased over the last years, providing

essential tools for casual creativity and image filtering [2].

Here, a popular method is to extract the style from one

exemplar image and transfer it to a target image or video,

thus making a generalized Neural Style Transfer (NST)

practicable [3].

NSTs enjoy great popularity with both users and develop-

ers because of their ability to emulate artistic styles without

the need to engineer style-specific algorithms. While NSTs

have also found their way into several professional tools,

such as Photoshop [4], they are mostly limited to resembling

“one click solutions”. In particular, these implementations

are typically constrained to pre-defined styles that can be

applied globally to a target image, thus enabling higher-

level interaction, but without lower-level control that is

often sought by artists [5] and prosumers of image filtering

apps [6]. For instance, no control over perceptual elements

of a style such as stroke placement or style granularity

is provided, i.e., inherently limiting the degree of artis-

tic expression [7]. Further, existing approaches for low-

level control of NSTs generally only consider a univariate

adjustment of the stylized outputs, which makes complex

and individual editing impracticable. Furthermore, current

mobile apps are quite limited in their output resolutions,

which typically stems from inherent hardware limitations.

This work presents an approach for multivariate editing of

NSTs using a novel feedforward style transfer network that

alleviates the aforementioned limitations by incorporating

global and local control over style elements, such as their

granularity and orientation. We demonstrate the real-world

applicability of our concept by presenting a mobile app

(StyleTune) for interactive editing of NSTs. In addition,

our app enables to create high-resolution outputs of the

edited results to advance the field of mobile style transfer

towards art-directable tools for both casual and professional

creativity (Figure 1). To summarize, this paper makes the

following contributions:

1) A method for level-of-control interaction to adjust a

style’s stroke size, intensity, and rotation with a single

neural network.

2) A method for efficient upsampling and adaptive global

control over NST outputs using a novel two-stream

network architecture.

3) An interactive editing pipeline for NSTs on mobile

devices, with the ability to achieve high-resolution

outputs of 20 Mpix and more.

The remainder of this paper is structured as follows. Sec-

tion II reviews related and previous work on NST and

local-scale adjustable style transfer approaches. Section III

describes our method, gives an overview of our system, and

outlines implementation aspects. Section IV briefly explains

the structure and capabilities of the user interface provided

by our mobile app. Section V shows and discusses exem-

plary results and application examples. Finally, Section VI

concludes this paper and provides a prospect on future work.

II. RELATED WORK

NST was introduced in the seminal work of Gatys et al. [8],

which is based on iterative optimization of feature statistics

of a content, style and target image, extracted using a

CNN. The “similarity” of the target image to the style is



(a) Content and style images (b) Global transfer (c) Local adjustments (d) Upsampled NST and zoomed versions

Figure 1: Comparison between a global style transfer (b) and a locally-retouched version produced with StyleTune (c) based

on given content and style images (a). Figure (d) shows a high-resolution result obtained by style-guided upsampling of (c)

from 1024× 1024 pixels to a resolution of 3200× 3200 pixels. (content image from © Shutterstock, used with permission).

represented as the difference between Gram matrices in

style and target image over a set of feature responses of

the VGG [9] network. However, the optimization process

is computationally intensive and slow, and thus not suited

for use in interactive and mobile environments. To approach

this issue, several methods of accelerating style transfer have

been published—denoted as fast style transfer methods in

literature [3]. Generally, these methods train a network to

directly inference the stylized output, such as the popular

architecture introduced by Johnson et al. [10].

Furthermore, feed-forward network architectures can be

categorized by their ability to represent different styles.

While the approach of Johnson et al. [10] can represent

a single style per network, follow-up works added the

ability to represent multiple styles (Zhang et al. [11], Msg

Net) or arbitrary styles (Huang et al. adaptive Instance

Normalization (adaIN) [12]). However, representing more

styles with one single network generally represents a trade-

off in quality, memory and run-time performance versus

single-style networks [13], [14], and thus the single-style-

per-network approaches have prevailed in mobile applica-

tions as the ”gold standard” (e.g., refer to Prisma [15] and

Becasso [16]). While the overall goal of most style transfer

methods has been to achieve plausible global results without

requiring user interaction, several methods allow to adjust

perceptual factors of the output in varying degrees, and thus

directly or indirectly control semiotic aspects known from

artwork production [7]. Gatys et al. [17] demonstrate that

the iterative approach can adjust the style content trade-off

and colorization through weighting different loss terms. Wu

et al. [18] control stroke orientation by adding an additional

direction-aware loss term to the optimization. In the feed-

forward network approaches, the controllable factors are

either an inherent property of the network or have to be

explicitly built into the network architecture. For example,

arbitrary NST methods such as adaIN [12] inherently allow

adjusting the stroke size by re-scaling the input style image,

while this is not possible for single-style transfer methods.

For explicit control, Reimann et al. [14] extend a multiple-

styles-per-network approach with a consistency loss to en-

able seamless local combination of different styles. Jing

et al. [13] introduce an approach for globally and locally

adjusting stroke sizes using a multi-branch network archi-

tecture that includes a Stroke-Pyramid and explicitly training

different style sizes, and Yao et al. incorporate self-attention

into multi-stroke transfer [19]. Similarly, our approach also

extends a feed-forward, single-style-per-network architecture

with run-time controls. However, in contrast to previous

approaches, it allows a wider range of control for editing and

is more efficient with respect to the run-time and memory

consumption for large images and large-scale texture marks.

We demonstrate how to incorporate our approach and other

state-of-the-art NSTs into our pipeline for interactive editing

with local guidance and high-resolution upsampling in our

StyleTune app.

III. METHOD

A. Preliminary Analysis

Fundamentally, in NST, textural elements of the style such

as stroke placement, size, or orientation are not defined ex-

plicitly, but implicitly learned by matching the style images

Gram-based statistics over extracted features using image

recognition networks such as VGG [9]. These stroke textons

[20] are micro-structures in the generated image and reflect

perceptual style patterns in images stylized by NST. They

act as the implicit and entangled representation of several

painterly concepts such as stroke/brush-size, -orientation or

-intensity that are visible in the style image. In line with

previous work [11] [13], controlling strokes thus refers to

adjusting stroke textons, where the visual representation of

a stroke entirely depends on the extracted style statistics.

Stroke sizes in the generated output are sensitive to the

resolution of the style image, as the Gram-based statistics

over the VGG features are themselves not scale-invariant.

Resizing the style image during training can thus be used to

control the stroke size in the output image [13]. Furthermore,
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Figure 2: Schematic overview of the processing stages, components, and data flow for the presented approach.

the stroke size also strongly depends on the resolution of

the input image, as networks, once trained with a style

image, produce stroke features on a certain scale dependent

on the receptive field of the network. Thus, a smaller

image forwarded through the same network will produce

larger strokes in the output image as the receptive field

of convolutional units in the network is relatively higher.

Similarly, convolutional units are also not invariant against

rotation of the input, i.e., forwarding the rotated image

through an object detection network and then rotating the

output back produces different results than forwarding an un-

rotated image. In the following, we show how we make use

of these inherent properties of convolutional neural networks

to control multivariate aspects of the style.

B. Method Overview

Figure 2 shows an overview of our method for a controllable

NST, which allows control of stroke size, orientation, and

intensity on a global and local level. It comprises the

following main stages:

Stroke-Feature Computation: Computes stroke features fi
for different stroke granularities based on the rotated

(angle τ ) content input image IC using the content

encoder network E trained on the style image IS
(Section III-D).

Real-time Preview Generation: To support real-time pre-

view of local-adjustment results IP , this stage performs

image-based blending of the results of decoder network

D (Section III-D) applied to all features fi using

the spatial mask image IM and inverts the rotation

subsequently.

Local-adjusted NST Generation: To synthesize a high-

quality output image IO, this stage performs model-

space blending by combining the features fi based on

IM into a unified stroke feature map F that is fed

into the decoder D and followed-up with a rotation

inversion (Section III-F).

High-resolution Output Generation: To obtain a high-

resolution output, this stage performs optional upsam-

pling of IO using a service-based implementation of

patch-based upsampling [21].

C. Parameter Mapping

Our approach combines the controllability of the stroke

size and style intensity parameter (Figure 3) by mapping

them to different input modalities of the proposed network.

Stroke-orientation control on the other hand can be achieved

through transformation of the input image and does not need

any architecture considerations.

1) Stroke-Size Control: We make use of the scale depen-

dency of receptive fields (Section III-A) in our architecture

to scale stroke sizes (Figure 3). The naive approach of

downscaling the image, applying a conventional fast style

transfer network, and upscaling the image using a super res-

olution upscaling approach can achieve control over stroke

sizes, as Jing et al. [13] show. However, the output loses

sharpness and details. Therefore, the key idea of our network

is to combine dynamic input scaling with extracted high-

frequency details from the high-resolution input image. The

stroke size parameter λS effectively controls the receptive

field size of the stroke branch (Section III-D).

2) Stroke-Intensity Control: Based on instance normaliza-

tion, Dumoulin et al. [22] proposed a Conditional Instance

Normalization (CIN) layer that, instead of learning affine

parameters, learns a set of parameters β and γ for each

style. In their approach, conditioning on a style is achieved

as follows:

z = γs

(

x− µ(x)

σ(x)

)

+ βs

where µ(x) and σ(x) refer to the mean and standard devi-

ation taken across the spatial dimensions of input features

x. The NST network incorporates multiple CIN layers, and

sets βs and γs according to the chosen style s.

Huang et al. [12] further show, that the parameters can

be directly predicted from an input style image, without

requiring to train the corresponding style, yielding an adaIN

layer. We adapt the parametrization of α and β as a form

of general controllability that can map continuous input

variables to desired network outputs. Similar to Babaeizadeh

et al. [23], we map style intensity (Figure 3) via the CIN

layers, where the set of all CIN parameters Φ = {α, β} is

predicted using a linear regression Φ = WλI + b, where λI
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Figure 3: Variations of stroke size λS and style intensity λI .

is the input style intensity and W, b are learnable weights

obtained using a fully-connected layer.

D. Network Architecture

Figure 4 shows our proposed adjustable NST network archi-

tecture. The network consists of a two-branch architecture

using a Resnet-like [24] structure with residual blocks.

The dynamic/low-resolution branch is based on the fast

style transfer architecture [10], with instance normalization

replaced by CIN layers, and is responsible for learning the

stylization operation. The high-resolution branch consists of

a relatively lightweight set of layers for extracting high-

frequency details from the input image. Both branches

are fused by channel concatenation before decoding the

final output image. The input stroke size λS controls the

downsampling factor on the input image, with the dynamic

upsampling operation used to upsample back to the original

resolution before merging features. For local editing, the

encoder part E of the network is used to produce features

fi in different style scales which are blended together based

on a spatial mask IM during feature merging (c.f. Figure 2)

and then jointly decoded by the network decoder D.

E. Network Training

We train our proposed network on the MS-COCO

dataset [25] for 4 epochs using the Adam optimizer [26].

Images are cropped and resized to 512×512 pixels, and the

pre-trained VGG-19 [9] network is used as the loss network,

using style and content loss as defined by Gatys et al. [8],

for which relu1 1, relu2 1, relu3 1, relu4 1, relu5 1 are

used as the style layers and relu4 2 is used as the content
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Figure 4: Adjustable NST network architecture. The encoder

network E consists of a high-resolution processing branch

(left) and a low-resolution branch (right), that produce fea-

tures fi for a certain stroke size. The decoder D consists of a

feature merging and decoding operation. The stroke scale λS

is used as the downsampling factor of the input image for the

low-resolution branch. For each residual block (depicted in

orange), kernel size, channel number, and spatial up/down

sampling are shown. Residual blocks use CIN operations

with parameters α, β controlled through a regression from

the style-intensity parameter λI .

layer. During training, the input image for the low-resolution

branch is cycled through different factors for downsampling.

We set the downsampling factors to 2 and 4 during training.

During inference time, the downsampling factor can be cho-

sen from a continuous range even if these input sizes were

not observed during training. The style intensity parameter is

randomly sampled from a uniform distribution λI ∈ U(0, 1)
with the corresponding style weight set to the same value.

F. Stroke Orientation

We control stroke orientation by taking advantage of the

property that convolutional units are not invariant with

respect to input rotation, as described in Section III-A. In

particular, using the stroke rotation factor τ , a stroke in the
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Figure 5: Change of stroke orientation by content rotation.

output is rotated as follows:

fi = E
[

pad (RτIC)
]

IO = crop

[

R
−1

τ D

(

∑

i

fi

)]

where the input image IC is rotated by τ degrees using a

rotation matrix Rτ and then padded back to a rectangular

shape (i.e., filling whitespace resulting from the rotation)

using reflection padding. The image is then fed through

the encoder E to obtain stroke features fi, which can then

be blended according to a spatial mask and fed to the

decoder D to obtain the output image. The rotation is then

inverted and the resulting image is cropped to the original

extent to obtain a stylized image where the strokes are

rotated by τ (Figure 5). This method of stroke orientation

adjustment is agnostic of network architecture and can be

applied using any feed-forward NST method.

G. Implementation Aspects

Trained PyTorch models are converted to CoreML [27]

and weights are quantized to 16 bit in a pre-processing

step for their use on mobile devices supporting iOS. The

app implementation is based on Apple’s Swift, CoreML,

and Metal Application Programming Interfaces (APIs) for

GPU-based processing of neural networks and rendering

techniques, and implements the respective functionality for

local adjustments. The results can be transferred to a service-

based implementation of patch-based upsampling [21].

IV. USER INTERFACE

Figure 6 shows screenshots of our application illustrating the

three step process to create the final output image. Thereby,

the interactive image editing and enhancement workflow

comprises the following steps and interface components to

facilitate edits on different levels-of-control [5].

1) Selection of Content and Style Images: After select-

ing and loading or capturing an input content image IC ,

the user is required to select a style image IS from a list

of available/trained styles (Figure 6a). Upon style selection,

the application applies the respective NST model to the

content image and presents a preview IP of the resulting

style transfer in real-time. This enables a user to quickly

browse the available styles and to decide on a basic style

for his subsequent edits.

2) Adjustment of Stroke Granularity and Rotation:

After selecting a model for the global transfer, the user

can control the global stroke size λS interactively using a

slider. To allow for further control, we present the user an

additional optional editing view with global style settings

that enables the interactive adjustment of stoke size and

rotation (Figure 6b). To implement such interactive explo-

ration of the parameters (e.g., using a slider), results are

pre-generated when entering the edit view. Pre-computation

incurs a brief loading time, depending on the number of

pre-computed stroke-size levels. Furthermore, using painting

brush metaphors to manipulate the spatial mask IM , the user

can then locally apply different stroke-size and orientation

edits. The stroke levels are blended in image space to

retain interactivity during painting and then merged in the

feature space of the neural network to create seamless stroke

transitions on demand (Figure 6c).

3) High-resolution Image Export: In a final step, the

composition can be exported at a very high spatial resolution

using patch-based upsampling [21]. After the upsampled

image is received, the user can explore the result using pan

and zoom gestures. If the user is satisfied with the result,

the application allows storing and sharing respectively.

V. RESULTS

A. Qualitative Comparison

Figure 7 shows comparison results of our architecture to

the architecture of Jing et al. [13] as it is the most similar

to our work in representing stroke size control for a single

style in one feedforward style transfer network. In addition

to being able to control further elements of the style such as

its intensity, our adjustable architecture allows representing

a greater range of stroke size edits. This is especially true

for higher resolution images, as style transfer networks are

often trained on small resolutions images (usually 256×256
pixels) to reduce the computational cost, resulting in very

fine and subtle style elements during inference on large

images (i.e., edge length 1024 and above). Our architecture

mitigates this by downsampling the input image in the

stylization branch while retaining high-frequency details in

the high-resolution branch. Furthermore, our architecture can

represent consistent stroke sizes in different output image

resolutions – if the input image resolution doubles the stroke

size can be equally doubled. This can be important in an

application when working on a lower resolution preview

image and exporting to a high-resolution final image.

B. Exemplary Results

Figure 8 shows exemplary results obtained using StyleTune

to locally retouch the hair and face of the person. Using less

obstructive lines in the face yield a visually more pleasing

result and the lighter color tone directs the gaze to the center



(a) Content and style image selection (b) Style transfer without stroke rotation. (c) Local retouches with stroke rotation.

Figure 6: Screenshots of StyleTune: After selecting a style, it can be rotated globally. The user can apply different style sizes

to different parts of the image using brush metaphors (all content images from © Shutterstock, used with permission).
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Figure 7: Comparing global stroke size adjustment from lowest to highest level. Our approach can represent a higher range

of stroke sizes than the adaptive network of Jing et al. [13], as (in theory) arbitrarily large stroke sizes λI can be set. In

practice, very large stroke sizes tend to lose sharpness, as the style-branch resolution decreases.

of the image. Furthermore, oriented strokes along flow lines

of the hair in Figure 8c improves the visual separation of

foreground and background and lends the image more depth.

The tools provided via StyleTune can thus be used to art-

direct semiotic aspects of the style with local guidance, a

step towards semiotics-based loss functions [7].

C. Performance Considerations

The performance of the proposed architecture depends

mainly on the stroke-size setting, as larger strokes are

generated by running through a downsampled style branch.

As shown in Figure 9, for stroke sizes λS ≥ 2.0, our network

is faster than the adaptive network of Jing et al. [13] and

the similarly performing network of Johnson et al. [10]. For

comparability to the performance of other NST methods, the

timings are shown for a desktop system similar to [3].

For execution on mobile devices, we tested our application

using an iPad Pro 3rd generation equipped with an Apple

A12X Bionic and 4GB Random Access Memory (RAM).

We use input images of 1024 × 1024 pixels resolution.

The application of global style transfer and the image-based

blending operation run in real-time without notable latency.

The style-encoder network for stroke-size pre-generation

required approx. 5 sec for 10 stroke sizes and the decoder

network performing model-space blending approx. 3 sec. A
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Figure 8: Comparison between global style transfer and locally retouched versions produced using StyleTune.
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of our adjustable architecture and the adaptive network [13].

Tests were performed on a desktop PC using an Nvidia GTX

1080Ti GPU and averaged over 100 processed images.

lower number of pre-computed strokes can be sufficient for

many styles when editing locally, however when adjusting

the global granularity and orientation sliders, 10 levels and

more empirically provide a visually smooth transition be-

tween scales. The optional server-based upsampling requires

1min for 256 Mpix. The overall on-device memory usage

comprises approx. 900MB.

D. Limitations

While StyleTune enables more degrees of artistic freedom

for style transfer, there are still some limitations to over-

come. Our proposed architecture achieves a greater range

of flexibility for global edits, however, strokes from one

stroke-size level are generally not consistently placed at the

same location in other stroke-size levels. This represents

a limitation on local editing scenarios where strokes are

expected to consistently flow between different stroke sizes.

To remedy this, we also implement the adaptive stroke ar-

chitecture of Jing et al. [13] in StyleTune as an option for fine

detail control. Further, before locally applying edits, there

is a brush pre-generation step for every stroke size, which

incurs a loading time that is dependent on the number of

brush sizes and any stroke orientation changes require a new

round of pre-computation for stroke size previews. Finally,

the patch-based upsampling step alters global appearance in

ways that may not be intended by the user and has a high

execution time.

VI. CONCLUSIONS & FUTURE WORK

This paper introduces an approach for multivariate control

over fast style transfer. Our method is the first to enable

control over stroke size, style intensity, and stroke orienta-

tion with a single model. We demonstrate the real-world

applicability of our idea by implementing a mobile app

for fine-grained global and local control over these aspects

using our proposed network. Our app implements an editing

pipeline to enable both interactive adjusting and retouching

of results as well as very high-resolution exports using style-

guided upsampling. Our work is a step towards making NST

a useful tool for art-directed image stylization for casual and

professional users, however, still some limitations remain to

be addressed.

As future work, we plan to further explore the integration

of different style scales into patch-based upsampling by

adding a neural representation of stroke size and imple-

ment the upsampling method on mobile devices directly, to

provide interactive feedback by continuously updating the

visual results during editing.
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